Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis.
نویسندگان
چکیده
Skeletal muscle possesses a strong ability to regenerate following injury, a fact that has been largely attributed to satellite cells. Satellite cells are skeletal muscle stem cells located beneath the basal lamina of the myofiber, and are the principal cellular source of growth and regeneration in skeletal muscle. MicroRNAs (miRNAs) play key roles in modulating several cellular processes by targeting multiple mRNAs that comprise a single or multiple signaling pathway. Several miRNAs have been shown to regulate satellite cell activity, such as miRNA-489, which functions to maintain satellite cells in a quiescent state. Although muscle-specific miRNAs have been identified, many of the molecular mechanisms that regulate myogenesis that are regulated by miRNAs still remain unknown. In this study, we have shown that miR-128a is highly expressed in brain and skeletal muscle, and increases during myoblast differentiation. MiR-128a was found to regulate the target genes involved in insulin signaling, which include Insr (insulin receptor), Irs1 (insulin receptor substrate 1) and Pik3r1 (phosphatidylinositol 3-kinases regulatory 1) at both the mRNA and protein level. Overexpression of miR-128a in myoblasts inhibited cell proliferation by targeting IRS1. By contrast, inhibition of miR-128a induced myotube maturation and myofiber hypertrophy in vitro and in vivo. Moreover, our results demonstrate that miR-128a expression levels are negatively controlled by tumor necrosis factor α (TNF-α). TNF-α promoted myoblast proliferation and myotube hypertrophy by facilitating IRS1/Akt signaling via a direct decrease of miR-128a expression in both myoblasts and myotubes. In summary, we demonstrate that miR-128a regulates myoblast proliferation and myotube hypertrophy, and provides a novel mechanism through which IRS1-dependent insulin signaling is regulated in skeletal muscle.
منابع مشابه
Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis
BACKGROUND The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulati...
متن کاملThe reciprocal stability of FOXO1 and IRS2 creates a regulatory circuit that controls insulin signaling.
The transcription factor FoxO1 links the phosphatidylinositol 3-kinase (PI 3-kinase) --> Akt cascade to gene expression that regulates cell growth, survival, and metabolism. The receptors for insulin and IGFs factors are linked to this pathway through tyrosine phosphorylation of insulin receptor substrates-Irs1, 2, 3, and 4. However, it is unclear why Irs2 signaling predominates in certain tiss...
متن کاملMicroRNA-497 inhibits tumor growth through targeting insulin receptor substrate 1 in colorectal cancer
MicroRNAs (miRNAs) have been demonstrated to serve an important role in diverse biological processes and cancer progression. Downregulation of microRNA-497 (miR-497) has been observed in human colorectal cancer (CRC) tissues, but the function of miR-497 in CRC has not been well investigated. In the present study, it was demonstrated that expression of miR-497 was significantly downregulated in ...
متن کاملInhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice
OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulat...
متن کاملInactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation.
The forkhead transcription factor Foxo1 regulates expression of genes involved in stress resistance and metabolism. To assess the contribution of Foxo1 to metabolic dysregulation during hepatic insulin resistance, we disrupted Foxo1 expression in the liver of mice lacking hepatic Irs1 and Irs2 (DKO mice). DKO mice were small and developed diabetes; analysis of the DKO-liver transcriptome identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 126 Pt 12 شماره
صفحات -
تاریخ انتشار 2013